Special Practice Problems sudhir jainam

Prepared by:

~[JEE (Mains & Advanced)]~

Topic: Sequence & Series

**Dream is not that which you see while sleeping; it is something that does not let you sleep.-A.P.J. Abdul Kalam

• Objective Questions Type I [Only one correct	ct answer]
In each of the questions below, four choices are given of which most appropriate.	only one is correct. You have to select the correct answer which is the
 Number of identical terms in the sequence 2, 5, 8, 11, upto 100 terms and 3, 5, 7, 9, 11, upto 100 terms are (a) 17 (b) 33 (c) 50 (d) 147 If ab²c³, a²b³c⁴, a³b⁴c⁵ are in AP (a, b, c > 0), then the 	 9. The 1025th term in the sequence 1, 22, 4444, 888888888, is (a) 2⁹ (b) 2¹⁰ (c) 2¹¹ (d) 2¹² 10. If a, b, c are non-zero real numbers such that 3 (Σa² + 1) = 2 (Σa + Σab), then a, b, c are in
minimum value of $a + b + c$ is (a) 1 (b) 3 (c) 5 (d) 9 3. If $21(x^2 + y^2 + z^2) = (x + 2y + 4z)^2$, then x, y, z are in (a) AP (b) GP	(a) AP (b) GP (c) HP (d) AP and GP 11. If a, b, c, d are positive real numbers such that $a+b+c+d=2$, then $m = (a+b)(c+d)$ satisfies the relation
 (c) HP (d) not in AP/GP/HP 4. The sum of the integers lying between 1 and 100 (both inclusive) and divisible by 3 or 5 or 7 is (a) 818 (b) 1828 (c) 2838 (d) 3848 	(a) $0 < m \le 1$ (b) $1 \le m \le 2$ (c) $2 \le m \le 3$ (d) $3 < m \le 4$ 12. If $1 + \lambda + \lambda^2 + + \lambda^n = (1 + \lambda) (1 + \lambda^2) (1 + \lambda^4)$ $(1 + \lambda^8) (1 + \lambda^{16})$, then the value <i>n</i> is (where $n \in N$) (a) 32 (b) 16
 5. The maximum value of the sum of the AP 50, 48, 46, 44, is (a) 648 (b) 450 (c) 558 (d) 650 6. If a_i > 0, i = 1, 2, 3,, 50 and a₁ + a₂ + a₃ + + a₅₀ = 50, then the minimum value of 1/a₁ + 1/a₂ + 1/a₃ + + 1/a₅₀ is 	(a) 52 (b) 10 (c) 31 (d) 15 13. If $a_1, a_2, a_3, \dots, a_{20}$ are AMs between 13 and 67, then the maximum value of $a_1 a_2 a_3 \dots a_{20}$ is (a) $(20)^{20}$ (b) $(40)^{20}$ (c) $(60)^{20}$ (d) $(80)^{20}$
equal to (a) 150 (b) 100 (c) 50 (d) $(50)^2$ 7. If positive numbers a^{-1} , b^{-1} , c^{-1} are in AP, then the product	14. If $a_1, a_2,, a_n$ are positive real numbers whose product is a fixed number c , then the minimum value of $a_1 + a_2 + + a_{n-1} + 2a_n$ is (a) $n (2c)^{1/n}$ (b) $(n+1) c^{1/n}$ (c) $2nc^{1/n}$ (d) $(n+1) (2c)^{1/n}$
of roots of the equation $x^2 - kx + 2b^{101} - a^{101} - c^{101} = 0$, $(k \in R)$ has (a) > 0 (b) < 0 (c) = 0 (d) undefined 8. If $x^a = y^b = z^c$, where a, b, c are unequal positive numbers and x, y, z are in GP, then $a^3 + c^3$ is (a) $\ge 2b^3$ (b) $> 2b^3$	15. Suppose <i>a</i> , <i>b</i> , <i>c</i> are in AP and a^2 , b^2 , c^2 are in GP. If a > b > c and $a + b + c = 3/2$, then the value of <i>a</i> is (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{1}{2} + \frac{1}{\sqrt{3}}$ (d) $\frac{1}{2} + \frac{1}{\sqrt{2}}$
(c) $\leq 2b^3$ (d) $< 2b^3$	

-		
16.	If $\alpha \in (0, \pi / 2)$, then $\sqrt{(x^2)}$	$\overline{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$ is always
	greater than or equal to	
	(a) $2 \tan \alpha$	(b) 1
	(c) 2	(d) $\sec^2 \alpha$
17.	If a, b, c, d are distinct $d = a^2 + b^2 + c^2$, then $a + b$	integers in AP such that $+ c + d$ is
2.9	(a) 0	(b) 1
N.S.	(c) 2	(d) 3
18.	An infinite GP has first term.	x and sum 5, then x belongs to
Car		(b) $-10 < x < 0$
NG.	(c) $0 < x < 10$	(d) $x > 10$
19.	If $\sum_{i=1}^{11} a_i = 693$, where a_1, a_2	a_{2}, \ldots, a_{21} are in AP, then the
	value of $\sum_{r=0}^{10} a_{2r+1}$ is	
	r=0	
	(a) 361	(b) 363
	(c) 365	(d) 398
20.		$x^2 + bx + c = 0$, if $\Delta = b^2 - 4ac$
	and $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$	are in GP, where α , β are the
	roots of $a x^2 + bx + c = 0$, th	en
	(a) ∆ ≠ 0	(b) $b\Delta = 0$
	(c) $c\Delta = 0$	(d) $\Delta = 0$
21.	If a_1, a_2, a_3, a_4 are in HP, the $1 - \frac{3}{2}$	
	$\frac{1}{a_1 a_4} \sum_{r=1}^{5} a_r a_{r+1}$ is a root	OI .
		(b) $x^2 + 2x - 15 = 0$
	(c) $x^2 - 2x + 15 = 0$	(d)
r^{2} –	2x - 15 = 0	
~		1 1 1
22.		$\frac{1}{1+\sqrt{c}}$, $\frac{1}{\sqrt{c}+\sqrt{a}}$, $\frac{1}{\sqrt{a}+\sqrt{b}}$ are
	in (a) AP	(b) GP
	(c) HP	(d) no definite sequence
23.	If a, b, c, d, e, f are in AP, t	hen $(e - c)$ is equal to
	(a) $2(c-a)$	(b) $2(d-b)$
	(c) $2(f-d)$	(d) $2(d-c)$
24.	If $\log_3 2$, $\log_3 (2^x - 5)$ and 2^x	$\log_3 (2^x - 7/2)$ are in AP, then
	the value of x is	
61	(a) 2	(b) 3
	(c) 4	(d) 5
25.	If the ratio of the sums of ma	and <i>n</i> terms of an AP, is $m^2 : n^2$,
	then the ratio of its m th and	
	(a) $(m-1):(n-1)$ (b) $(2m+1):(2n+1)$	an en an
	(b) $(2m+1) \cdot (2n+1)$ (c) $(2m-1) \cdot (2n-1)$	and the second second
	(d) none of the above	4 1010
26	If the sum of first n positive	integers is $\frac{1}{5}$ times the sum of
	their squares, then n equals	
	men squares, men n equals	

(a)	5		
	-		

(b) 6 (d) 8

(c) 7 27. The interior angles of a polygon are in AP the smallest angle is 120° and the common difference is 5°. Then, the number of sides of polygon, is

28. If a, b, c are in AP, then the equation $(a-b) x^{2} + (c-a) x + (b-c) = 0$ has two roots which are

- (a) rational and equal (b) rational and distinct
- (d) complex conjugates (c) irrational conjugates 29. If the sum of first n terms of an AP is $(Pn + Qn^2)$, where
- P, Q are real numbers, then the common difference of the AP is
 - (a) P Q(b) P + Q(c) 2Q (d) 2P
- 30. Given two numbers a and b. Let A denote their single AM and S denote the sum of n AM's between a and b, then (S/A) depends on
 - (a) n, a, b (b) n, a
 - (c) n, b (d) n only
- 31. If x, (2x + 2), (3x + 3), ... are in GP, then the next term of this sequence is
 - (b) 27 (a) 27
 - (d) -13.5 (c) 13.5
- 32. If each term of a GP is positive and each term is the sum of its two succeeding terms, then the common ratio of the GP is

(a)
$$\left(\frac{\sqrt{5}-1}{2}\right)$$
 (b) $\left(\frac{\sqrt{5}+1}{2}\right)$
(c) $-\left(\frac{\sqrt{5}+1}{2}\right)$ (d) $\left(\frac{1-\sqrt{5}}{2}\right)$

- 33. The largest interval which the for series $1 + (x - 1) + (x - 1)^2 + ... \infty$ may be summed, is (a) 0 < x < 1(b) 0 < x < 2
 - (d) -2 < x < 2(c) -1 < x < 1
- 34. Three numbers, the third of which being 12, form decreasing GP. If the last term were 9 instead of 12, the three numbers would have formed an AP. The common ratio of the GP is
 - (a) 1/3(b) 2/3
 - (d) 4/5 (c) 3/4
- **35.** The coefficient of x^{49} in the product (x-1)(x-3)...(x-99) is
- (a) -99^2 (b) 1 (c) - 2500 (d) none of these **36.** If $(1.05)^{50} = 11.658$, then $\sum_{n=1}^{\infty} (1.05)^n$ equals
 - (a) 208.34 (b) 212.12 (c) 212.16 (d) 213.16
- 37. If a, b, c are digits, then the rational number represented by 0. cababab ... is (a) cab / 990
 - (b) (99c + ba) / 990
 - (c) (99c + 10a + b) / 99(d) (99c + 10a + b) / 990

38.	If $\log_2 (a + b) + \log_2 (c + d)$ of the expression $a + b + c + d$	\geq 4. Then the minimum value d is
	(a) 2	(b) 4
	(c) 8	(d) none of these
39.	The HM of two numbers is a the relation $2A + G^2 = 27$, t	and their AM and CM satisfy

(a) – 3 and 1	(b) 5 and - 25
(c) 5 and 4	(d) 3 and 6

- **40.** If $\Sigma n = 55$, then Σn^2 is equal to
 - (a) 385 (b) 506
 - (c) 1115 (d) 3025

41. The natural numbers are grouped as follows {1}, {2, 3, 4}, {5, 6, 7, 8, 9}, ..., then the first element of the *n*th group is
(a) n² - 1
(b) n² + 1

- (c) $(n-1)^2 1$ (d) $(n-1)^2 + 1$
- **42.** A monkey while trying to reach the top of a pole of height 12 m takes every time a jump of 2 m but slips 1 m while holding the pole. The number of jumps required to reach the top of the pole, is
 - (a) 6 (b) 10
 - (c) 11 (d) 12

43. The sum of the series

- $\begin{array}{l} 1 \cdot n + 2 \cdot (n-1) + 3 \cdot (n-2) + \dots + n \cdot 1 \text{ is} \\ \text{(a)} \quad \frac{n (n+1) (n+2)}{6} \\ \text{(b)} \quad \frac{n (n+1) (n+2)}{3} \\ \text{(c)} \quad \frac{n (n+1) (2n+1)}{6} \\ \text{(d)} \quad \frac{n (n+1) (2n+1)}{3} \end{array}$
- **44.** If *p*, *q*, *r* are three positive real numbers are in AP, then the roots of the quadratic equation $px^2 + qx + r = 0$ are all real for
- (a) $\left| \frac{r}{p} 7 \right| \ge 4\sqrt{3}$ (b) $\left| \frac{p}{r} 7 \right| < 4\sqrt{3}$ (c) all p and r (d) no p and r 45. If $\frac{a+bx}{r} = \frac{b+cx}{r} = \frac{c+dx}{r}$ ($x \ne 0$), then a, b, c, d are in

a – bx	b - cx	c - ax		
(a) AP				GP
(a) HP			(d)	none of thes
			()	

46. Two AMs A_1 and A_2 ; two GMs G_1 and G_2 and two HMs H_1 and H_2 are inserted between any two numbers, then $H_1^{-1} + H_2^{-1}$ equals

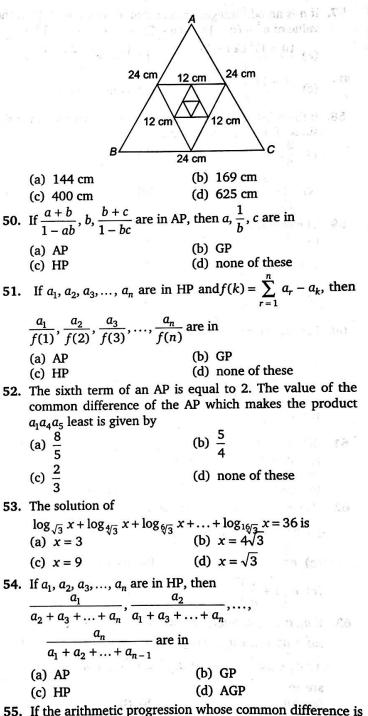
(a)
$$A_1^{-1} + A_2^{-1}$$
 (b) $G_1^{-1} + G_2^{-1}$
(c) $G_1 G_2 / (A_1 + A_2)$ (d) $(A_1 + A_2) / G_1 G_2$
47. The sum of the products of ten numbers $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ taking two at a time is
(a) - 55 (b) 55

- (c) 165 (d) 165
- **48.** Given that *n* arithmetic means are inserted between two sets of numbers *a*, 2*b* and 2*a*, *b*, where *a*, $b \in R$. Suppose further that *m*th mean between these two sets of numbers is same, then the ratio, *a* : *b* equals

(a)
$$n - m + 1:m$$

(b) $n - m + 1:n$
(c) $m:n - m + 1$
(d) $n:n - m + 1$

49. One side of an equilateral triangle is 24 cm. The mid points of its sides are joined to form another triangle whose mid points are in turn jointed to form still another triangle. This process continues infinitely. The sum of the perimeters of all the triangles is



- 55. If the arithmetic progression whose common difference is none zero, the sum of first 3n terms is equal to the sum of the next n terms. Then the ratio of the sum of the first 2n terms to the next 2n terms is
 - (a) 1/5 (b) 2/3 (c) 3/4 (d) none of these
 - PAGE#3

- 56. Let a, b, c be three positive prime numbers. The progression in which \sqrt{a} , \sqrt{b} , \sqrt{c} can be three terms (not necessarily consecutive) is
 - (a) AP(b) GP(c) HP(d) none of these
- 57. If *n* is an odd integer greater than or equal to 1, then the value of $n^3 (n-1)^3 + (n-2)^3 ... + (-1)^{n-1} 1^3$ is

1)

(a)
$$\frac{(n+1)^2 (2n-1)}{4}$$
 (b) $\frac{(n-1)^2 (2n-1)}{4}$
(c) $\frac{(n+1)^2 (2n+1)}{4}$ (d) none of these

58. If the sides of a right angled triangle form an AP, then the sines of the acute angles are

(a)
$$\frac{3}{5}, \frac{4}{5}$$
 (b) $\sqrt{3}, \frac{1}{3}$
(c) $\sqrt{\left(\frac{\sqrt{5}-1}{2}\right)}, \sqrt{\left(\frac{\sqrt{5}+1}{2}\right)}$ (d) $\frac{\sqrt{3}}{2}, \frac{1}{2}$

59. The coefficient of x^{n-2} in the polynomial

$$(x-1) (x-2) (x-3) \dots (x-n) is$$
(a) $\frac{n (n^2+2) (3n+1)}{24}$ (b) $\frac{n (n^2-1) (3n+2)}{24}$
(c) $\frac{n (n^2+1) (3n+4)}{24}$ (d) none of these

60. Let $\{a_n\}$ be a GP such that $\frac{a_4}{a_6} = \frac{1}{4}$ and $a_2 + a_5 = 216$. Then

$$a_1$$
 is equal to

 (a) $12 \text{ or } \frac{108}{7}$

 (b) 10

 (c) $7 \text{ or } \frac{54}{7}$

 (d) none of these

- 61. If $< a_n >$ is an AP and $a_1 + a_4 + a_7 + ... + a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to (a) 96 (b) 98 (c) 100 (d) none of these
- **62.** The sum to infinity of the series,

$$1 + 2\left(1 - \frac{1}{n}\right) + 3\left(1 - \frac{1}{n}\right)^{2} + \dots \text{ is}$$

(a) n^{2} (b) $n (n + 1)$
(c) $n\left(1 + \frac{1}{n}\right)^{2}$ (d) none of thes

- 63. If $a_1, a_2, ..., a_n$ are *n* non zero real numbers such that $(a_1^2 + a_2^2 + ... + a_{n-1}^2) (a_2^2 + a_3^2 + ... + a_n^2)$ $\leq (a_1a_2 + a_2a_3 + ... + ... + a_{n-1}a_n)^2$, then $a_1, a_2..., a_n$ are in (a) AP (b) GP
 - (c) HP (d) none of these
- 64. The cubes of the natural numbers are grouped as 1³, (2³, 3³), (4³, 5³, 6³), ..., then sum of the numbers in the *n*th group is
- (a) $\frac{1}{8}n^3(n^2+1)(n^2+3)$ (b) $\frac{1}{16}n^3(n^2+16)(n^2+12)$ (c) $\frac{n^3}{12}(n^2+2)(n^2+4)$ (d) none of the above 65. If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$ where a, b, c are in AP such that |a| < 1, |b| < 1 and |c| < 1then x, y, z are in (a) AP (b) GP (d) none of these (c) HP 66. Let a_n be the *n*th term of the GP of positive numbers. Let $\sum_{n=1}^{100} a_{2n} = \alpha \text{ and } \sum_{n=1}^{100} a_{2n-1} = \beta, \text{ such that } \alpha \neq \beta, \text{ then the}$ common ratio is (b) β/α (a) α/β (d) $\sqrt{(\beta/\alpha)}$ (c) $\sqrt{(\alpha/\beta)}$ 67. If $a_1 = 0$ and $a_1, a_2, a_3, \dots, a_n$ are real numbers such that $|a_i| = |a_{i-1} + 1|$ for all *i*, then the arithmetic mean of the numbers $a_1, a_2, ..., a_n$ has value x where (b) $x < -\frac{1}{2}$ (a) x < -1(d) $x = -\frac{1}{2}$ (c) $x \ge -\frac{1}{2}$ **68.** If a_1 , a_2 , a_3 ($a_1 > 0$) are in GP with common ratio r, then the value of r for which the inequality $9a_1 + 5a_3 > 14a_2$ holds can not lie in the interval (b) $1, \frac{9}{5}$ (a) [1,∞) (c) $\left[\frac{4}{5}, 1\right]$ (d) $\frac{5}{0}, 1$ 69. The coefficient of x^{203} in the $(x-1)(x^2-2)(x^3-3)...(x^{20}-20)$ is expansion (a) - 35(b) 21 (d) 15 (c) 13 series **70.** If the sum of n terms of the $\frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \frac{1+2+3}{1^3+2^3+3^3} + \dots \text{ is } S_n \text{, then } S_n \text{ exceeds 199}$ for all n greater than (b) 50 (a) 99 (d) 100 (c) 199 71. The numbers $3^{2 \sin 2x - 1}$, 14, $3^{4 - 2 \sin 2x}$ form first three terms of an AP, its fifth term is equal to (a) - 25 (b) - 12 (d) 53 (c) 40

- 72. In a sequence of (4n + 1) terms the first (2n + 1) terms are in AP whose common difference is 2, and the last (2n + 1)terms are in GP whose common ratio is 0.5. If the middle terms of the AP and GP are equal, then the middle term of the sequence is
 - $n \cdot 2^{2n+1}$ (b) $\frac{n \cdot 2^{n+1}}{2^{2n-1}}$ (a) 2.2n (c) $n2^{n}$ (d) none of these
- **73.** If $a, a_1, a_2, a_3, \dots, a_{2n}$, b are in AP and $a, g_1, g_2, g_3, \dots, g_{2n}$, b are in GP and h is the HM of a and b, then

$a_1 + a_{2n}$	$+\frac{a_2+a_{2n-1}}{4}+$	$+\frac{a_{n}+a_{n+1}}{a_{n+1}}$
8182n	$g_2 g_{2n-1}$	$g_n g_{n+1}$
is equal t	:0	
(a) $\frac{2n}{h}$		(b) 2 <i>nh</i>
(c) nh		(d) $\frac{n}{h}$
Let $S = \frac{8}{5}$	$\frac{16}{65} + \frac{16}{65} + \dots + \frac{12}{2^{18}}$	$\frac{28}{+1}$, then

74.

(a)
$$S = \frac{1088}{545}$$

(b) $S = \frac{545}{1088}$
(c) $S = \frac{1056}{545}$
(d) $S = \frac{545}{1056}$

- 75. If $\sin \theta$, $\sqrt{2}$ (sin θ + 1), $6 \sin \theta$ + 6 are in GP, then the fifth term is
 - (b) $82\sqrt{2}$ (a) 81 (c) 162 (d) none of these
- **76.** If $\ln(a + c)$, $\ln(c a)$, $\ln(a 2b + c)$ are in AP, then (b) a^2 , b^2 , c^2 are in AP (a) a, b, c are in AP (c) a, b, c are in GP (d) a, b, c are in HP
- 77. Let a_1, a_2, a_3, \dots be in an AP with common difference not a multiple of 3. Then maximum number of consecutive terms so that all are primes is
 - (a) 2 (b) 3 (c) 5
 - (d) infinite
- 78. The sum of the product taken two at a time of the numbers 1, 2, 2^2 , 2^3 , ... $2^{\bar{n}-2}$, 2^{n-1} is

(a)
$$\frac{1}{3} \cdot 2^{2n} + \frac{2}{3}$$

(b) $\frac{1}{3} \cdot 2^{2n} - 2^n + \frac{1}{3}$
(c) $\frac{1}{3} \cdot 2^{2n} - \frac{1}{3}$
(d) $\frac{1}{3} \cdot 2^{2n} - 2^n + \frac{2}{3}$

- 79. The sum of the infinite terms of the series $\frac{5}{3^2 \cdot 7^2} + \frac{9}{7^2 \cdot 11^2} + \frac{13}{11^2 \cdot 15^2} + \dots \text{ is }$
 - (b) $\frac{1}{36}$ (a) (c) $\frac{1}{54}$ (d) $\frac{1}{72}$
- 80. Let a, b, c be positive real numbers, such that $bx^{2} + (\sqrt{(a+c)^{2} + 4b^{2}})x + (a+c) \ge 0, \forall x \in \mathbb{R},$ then a, b, c are in

e	(a) GP and the state (b) AP
.)	(c) HP (d) none of these
e f	81. $\left(1\frac{2}{3}\right)^2 + \left(2\frac{1}{3}\right)^2 + 3^2 + \left(3\frac{2}{3}\right)^2 + \dots$ to 10 terms, the sum is
	(a) $\frac{1390}{9}$ (b) $\frac{1790}{9}$
	(c) $\frac{1990}{9}$ (d) none of these
•	82. The consecutive odd integers whose sum is $45^2 - 21^2$ are
	(a) 43, 45,, 75 (b) 43, 45,, 79
	(c) 43, 45,, 85 (d) 43, 45,, 89
	83. If $\langle a_n \rangle$ and $\langle b_n \rangle$ be two sequences given by $a_n = (x)^{1/2^n} + (y)^{1/2^n}$ and $b_n = (x)^{1/2^n} - (y)^{1/2^n}$ for all
	$n \in N$, then $a_1 a_2 a_3 \dots a_n$ is
	(a) $\frac{x+y}{b_n}$ (b) $\frac{x-y}{b_n}$
	$r^2 + r^2$ $r^2 - r^2$
	(c) $\frac{x^2 + y^2}{b_r}$ (d) $\frac{x^2 - y^2}{b_r}$
	84. If $x, x+1 , x-1 $ are the three terms of an AP. Its sum
	upto 20 terms is
	(a) 90 or 175 (b) 180 or 350
	(c) 360 or 700 (d) 720 or 1400
	85. If Σ n , $\frac{\sqrt{10}}{3}\Sigma$ n^2 , Σ n^3 are in GP, then the value of n is
	(a) 3 (b) 4
	(c) 2 (d) non existent
	86. If $\sum_{r=1}^{n} t_r = \frac{n(n+1)(n+2)(n+3)}{8}$, where t_r denotes the
	r=1 (a) $r=1$ (b) $r=1$ (c) $r=1$
	r th term of a series, then $\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{t_r}$ is
e	(a) $\frac{1}{8}$ (b) $\frac{1}{4}$
	(c) $\frac{1}{2}$ (d) 1
8	37. If an AP, $a_7 = 9$ if $a_1 a_2 a_7$ is least, the common difference is
	(a) $\frac{13}{20}$ (b) $\frac{23}{20}$
	(a) $\frac{13}{20}$ (b) $\frac{23}{20}$ (c) $\frac{33}{20}$ (d) $\frac{43}{20}$
8	8. If the ratio of AM between two positive real numbers
0	a and b to their HM is $m:n$; then $a:b$ is equal to
	(a) $\sqrt{(m-n)} + \sqrt{n}$ (b) $\sqrt{n} + \sqrt{(m-n)}$

(a)
$$\frac{\sqrt{(m-n)} + \sqrt{n}}{\sqrt{(m-n)} - \sqrt{n}}$$
 (b) $\frac{\sqrt{n} + \sqrt{(m-n)}}{\sqrt{n} - \sqrt{(m-n)}}$
(c) $\frac{\sqrt{m} + \sqrt{(m-n)}}{\sqrt{m} - \sqrt{(m-n)}}$ (d) $\frac{\sqrt{(m-n)} + \sqrt{m}}{\sqrt{(m-n)} - \sqrt{m}}$

							1
89.	If $\sum_{n=1}^{k} \left[\frac{1}{3} + \frac{n}{90} \right] = 21$, where	e [x] denotes the integral part	τ <u>η</u>	(a) $2^{105} - 2^{121}$ (c) $2^{120} - 2^{104}$	(b) :	$2^{121} - 2^{105}$ $2^{105} - 2^{104}$	2. 10 0
	of x, then k is equal to (a) 84 (c) 85 If $x \in \{1, 2, 3,, 9\}$ and f_n	(b) 80 (d) none of these $(x) = x \propto \dots x$ (<i>n</i> digits), then	94.	The roots of equation - 6 and 1 and 2, h_1 denotes the integral in AP, then a_3h_{18} is	on $x^2 + 2(a - 1)$ $h_1, h_2,, h_{20}, [a]$ l part of a and	3) $x + 9 = 0$ lie 1] are in HP,	e between where [a]
ి. • జో	$f_n^2(3) + f_n(2)$ is equal to (a) $2f_{2n}(1)$ (c) $f_{2n}(1)$	(b) $f_n^2(1)$ (d) - f_n(4)		(a) 6 (c) 3	(b) (d) 1	none of these	
91.	If three positive real number then minimum value of <i>b</i> is	s a, b, c are in AP with abc - 4	95.	Value of $L = \lim_{n \to \infty} -\frac{1}{n}$	$\frac{1}{n^4} \left[1 \cdot \left(\sum_{k=1}^n k \right) \right]$	$+2\cdot\left(\sum_{k=1}^{n-1}k\right)$	k
1	(a) 4 (c) 2	(b) 3 (d) 1/2				$\begin{pmatrix} n-2\\ \Sigma \end{pmatrix}$	ec]
92.	The numbers of divisors of	(d) 1/2 1029, 1547 and 122 are in			+ 3	$\cdot \left(\sum_{k=1}^{n-2} k\right) + \dots$	$+ n \cdot 1$ is
	(a) AP	(b) GP		(a) 1/24	(b) 1	1/12	ê -
93.	(c) HP The coefficient of x^{15} in the	(d) none of these		(c) 1/6	(d) 1	1/3	1
20.	$(1-x)(1-2x)(1-2^2x)(1-x^2)$	$1 - 2^3 x$) $(1 - 2^{15} x)$ is					
							3, 21

• Objective Questions Type II [One or more than one correct answer(s)]

In each of the questions below four choices of which one or more than one are correct. You have to select the correct answer(s)

1. If $\tan^{-1} x$, $\tan^{-1} y$, $\tan^{-1} z$ are in AP and x, y, z are also in AP (y being not equal to 0, 1 or -1), then (a) x, y, z are in GP

(b) x, y, z are in HP

(c) x = y = z

- (d) $(x-y)^2 + (y-z)^2 + (z-x)^2 = 0$
- 2. If d, e, f are in GP and the two quadratic equations $a x^2 + 2 bx + c = 0$ and $d x^2 + 2ex + f = 0$ have a common root, then

(a) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in HP (b) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in GP (c) 2 dbf = aef + cde(d) $b^2 df = ace^2$

3. If three unequal numbers p, q, r are in HP and their squares are in AP, then the ratio p:q:r is (a) $1 - \sqrt{3} = 2 = 1 + \sqrt{3}$ (b) $1:\sqrt{2}:-\sqrt{3}$

(c)
$$1:-\sqrt{2}:\sqrt{3}$$
 (d) $1+\sqrt{3}:-2:1-\sqrt{3}$

4. For a positive integer n, let $\alpha(n) = 1 + 1/2$ $+ \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^n} - 1$, then

(a) α (100) \leq 100	(b) α (100) > 100	-
(c) α (200) \leq 100	(d) α (200) > 100	

- (d) α (200) > 100 5. The pth term T_p of HP is q(p+q) and qth term T_q is p(p+q) when p > 1, q > 1, then (a) $T_{p+q} = pq$ (b) $T_{pq} = p + q$ (c) $T_{p+q} > T_{pq}$ (d) $T_{pq} > T_{p+q}$
- 6. If the first and (2n 1)th term of an AP, a GP and a HP are equal and their nth terms are a, b and c respectively, then : (a) a = b = c(b) a + c = b(0) -> 1>

(c)
$$a \ge b \ge c$$
 (d) $ac = b^2$

7. If a, b, c be three unequal positive quantities in HP, then (a) $a^{100} + c^{100} > 2b^{100}$ (b) $a^3 + c^3 > 2b^3$ (c) $a^5 + c^5 > 2b^5$ (d) $a^2 + c^2 > 2b^2$

- 8. The sum of *n* terms of the series $\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{3 \cdot 4 \cdot 5 \cdot 6} + \dots \text{ is }$ (a) $\frac{n(n^4+6n+11)}{18(n+1)(n+2)(n+3)}$ $n(n^2 + 6n + 11)$ $\frac{n^3+6}{18(n+1)(n+2)(n+3)}$ of 3. **(b)** Is for (c) $\frac{1}{18} - \frac{1}{3(n+1)(n+2)(n+3)}$ (d) $\frac{1}{6} - \frac{1}{2(n+1)(n+2)(n+3)}$ 9. Given that $0 < x < \pi/4$ and $\pi/4 < y < \pi/2$ and $\sum_{k=0}^{\infty} (-1)^k \tan^{2k} x = a, \sum_{k=0}^{\infty} (-1)^k \cot^{2k} y = b,$ then
- $\sum_{k=0}^{\infty} \tan^{2k} x \cot^{2k} y$ is (a) $\frac{1}{a} + \frac{1}{b} - \frac{1}{ab}$ (c) $\frac{1}{\frac{1}{a} + \frac{1}{b} - \frac{1}{ab}}$ (b) a + b - ab(d) $\frac{ab}{a+b-1}$
- 10. If a, b, c are in HP, then the value $\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right) \left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$ is Charles and the state

(a) $\frac{2}{bc} - \frac{1}{b^2}$ (b) $\frac{1}{4} \left(\frac{3}{c^2} + \frac{2}{ca} - \frac{1}{a^2} \right)$ (c) $\frac{3}{b^2} - \frac{2}{ab}$ (d) none of these 11. $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$ is equal to (a) $\frac{n(n+1)(n+2)}{6}$ (b) Σn^2 (c) ${}^{n}C_{3}$ (d) $n+2C_{2}$ 12. If 1, $\log_y x$, $\log_z y$, $-15 \log_y z$ are in AP, then (a) $z^3 = x$ (b) $x = y^{-1}$ (c) $z^{-3} = y$ (d) $x = y^{-1} = z^3$ 13. If b_1 , b_2 , b_3 ($b_1 > 0$) are three successive terms of a GP with common ratio r, the value of r for which the inequality $b_3 > 4b_2 - 3b_1$ holds is given by (a) r > 3(b) r < 1 (c) r = 3.5(d) r = 5.214. If $\log_x a$, $a^{x/2}$ and $\log_b x$ are in GP, then x is equal to (a) $\log_a (\log_b a)$ (b) $\log_a (\log_e a) - \log_a (\log_e b)$ (c) $-\log_a(\log_a b)$ (d) $\log_a (\log_e b) - \log_a (\log_e a)$ 15. If a, b, c are in HP, then (a) $\frac{a}{b+c-a}$, $\frac{b}{c+a-b}$, $\frac{c}{a+b-c}$ are in HP (b) $\frac{2}{b} = \frac{1}{b-a} + \frac{1}{b-c}$ (c) $a - \frac{b}{2}, \frac{b}{2}, c - \frac{b}{2}$ are in GP (d) $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in HP **16.** If $\sum_{r=1}^{n} r(r+1)(2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then (a) a = 1/2(b) b = 8/3(d) e = 0(c) c = 9/217. If 1, $\log_9 (3^{1-x} + 2)$ and $\log_3 (4 \cdot 3^x - 1)$ are in AP, then x is equal to (b) $\log_3 4$ (a) log₄ 3 (d) $\log_3(0.75)$ (c) $1 - \log_3 4$ 18. The series of natural numbers is divided into groups 1; 2, 3, 4; 5, 6, 7, 8, 9; and so on. Then the sum of the numbers in the *n*th group is (a) $(2n-1)(n^2-n+1)$ (b) n^3-3n^2+3n-1 (c) $n^3 + (n-1)^3$ (d) $n^3 + (n+1)^3$ **19.** If α , β , γ , δ are in AP and $\int_0^2 f(x) dx = -4$, where $x+\alpha x+\beta x+\alpha-\gamma$ $f(x) = |x + \beta | x + \gamma$ x-1, then the common $x+\gamma x+\delta x-\beta+\delta$ difference d is (a) 1 (b) -1 (c) 2 (d) - 2

20. If $a_i > 0$ for all $i \in N$, then a damage of O back it is the set of O back it is t (a) $(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right) \ge 9$ (b) $\left(\frac{a_1}{a_2} + \frac{a_3}{a_4} + \frac{a_5}{a_6}\right) \left(\frac{a_2}{a_1} + \frac{a_4}{a_3} + \frac{a_6}{a_5}\right) \ge 9$ (c) $(a_1 a_2 + a_3 a_4) (a_1 a_3 + a_2 a_4) \ge 4a_1 a_2 a_3 a_4$ (d) none of the above 21. The pth, 2pth and 4pth terms of an AP are in GP the common ratio of GP is (a) 2 (b) 1 (d) 1/2(c) 4 **22.** If a, b, c are real and for some real x, $(a^{2} + b^{2})x^{2} + 2(ab + bc)x + (b^{2} + c^{2}) \le 0$, then (a) a, b, c are in GP (b) a, b, c are in AP (c) $ax^2 + 2bx + c \ge 0$ for all x (d) $a x^{2} + 2bx + c = 0$ for all x 23. Which of the following are true (a) $x + \frac{1}{x} \ge 2$, if x > 0(b) $x + \frac{1}{x} \le -2$, if x < 0(c) $2^x + 2^{-x} \ge 2$ for all x(d) $n! > n^n$ 24. If a, b, c, d are distinct positive numbers in AP, then (a) *ad* < *bc* (b) a + c < b + d(c) a + d = b + c(d) (a+1)(d+1) < (b+1)(c+1)**25.** The value of x for which $\frac{1}{1+\sqrt{x}}$, $\frac{1}{1-x}$, $\frac{1}{1-\sqrt{x}}$ are in AP lie in (a) (0, 1)(b) (1,∞) (c) (0,∞) (d) none of these **26.** If a, b, c are in AP and a^2 , b^2 , c^2 are in HP, then (b) $a^2 = b^2 = c^2/2$ (a) a = b = c(d) -a/2, b, c are in GP (c) a, b, c are in GP 27. If $\log_2 (5 \cdot 2^x + 1)$, $\log_4 (2^{1-x} + 1)$ and 1 are in AP, then x is equal to (a) $\frac{\log 5}{\log 2}$ (b) $\log_2(0.4)$ (d) $\frac{\log 2}{\log 5}$ is recovered to k (c) $1 - \frac{\log 5}{\log 2}$ 28. If the arithmetic mean of two positive numbers a and b(a > b) is twice their geometric mean, then a : b is (a) $2 + \sqrt{3} : 2 - \sqrt{3}$ (b) $7 + 4\sqrt{3}:1$ (c) $1:7 - 4\sqrt{3}$ (d) $2:\sqrt{3}$. $\begin{vmatrix} a & b & a\alpha - b \end{vmatrix}$ **29.** The determinant $\begin{vmatrix} b & c & b\alpha - c \end{vmatrix} = 0$, if 2 1 0 (a) a, b, c are in AP (b) a, b, c are in GP (d) $\alpha = \frac{1}{2}$ (c) a, b, c are in HP

• Linked-Comprehension Type

In these questions, a passage (paragraph) has been given followed by questions based on each of the passages. You have to answer the questions based on the passage given.

PASSAGE 1

Suppose p is the first of n (n > 1) AM's between two positive numbers a and b; q the first of n HM's between the same two numbers.

On the basis of above information, answer the following questions :

1. The value of p is
(a)
$$\frac{na+b}{n+1}$$
 (b) $\frac{na-b}{n+1}$
(c) $\frac{nb+a}{n+1}$ (d) $\frac{nb-a}{n+1}$
2. The value of q is
(a) $\frac{ab(n+1)}{b+an}$ (b) $\frac{ab(n+1)}{(a+bn)}$
(c) $\frac{ab(n-1)}{b+an}$ (d) $\frac{ab(n-1)}{a+bn}$
3. The value of $\left(\frac{p}{q}-1\right)$ is

(a) $\frac{n}{(n-1)^2} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)^2$	(b) $\frac{n}{(n-1)^2} \left(\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} \right)^2$
(c) $\frac{n}{(n+1)^2} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)^2$	(d) $\frac{n}{(n+1)^2} \left(\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} \right)^2$

4.	If $p = 8$ and $n = 3$, then
	(a) q lies between 8 and 32
	(b) q lies between 8 and 16
	(c) q does not lies between 8 and 32
	(d) q does not lies between 8 and 16
5.	Final conclusion is
	(a) q lies between p and $\left(\frac{n+1}{n-1}\right)p$
	(b) q lies between p and $\left(\frac{n+1}{n-1}\right)^2 p$
	(c) q does not lies between p and $\left(\frac{n+1}{n-1}\right)$
	(d) q does not lies between p and $\left(\frac{n+1}{n-1}\right)$

PASSAGE 2

If A, G and H are respectively arithmetic, geometric and harmonic means between a and b both being unequal and positive, then $A = \frac{a+b}{2} \Rightarrow a+b = 2A, G = \sqrt{ab} \Rightarrow ab = G^2 \text{ and } H = \frac{2ab}{a+b} \Rightarrow G^2 = AH$

From above discussion we can say that a, b are the roots of the equation $x^2 - 2Ax + G^2 = 0$ Now, quadratic equation $x^2 - Px + Q = 0$ and quadratic equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ have a root common and satisfy the relation $b = \frac{2ac}{(a+c)}$, where a, b, c are real numbers.

On the basis of above information, answer the following questions :

1. The value of $\frac{a(b-c)}{b(c-a)}$ is 4. If the geometric and harmonic means of two numbers are 16 and 12 $\frac{4}{5}$, then the ratio of one number to the other is (a) - 2(b) 2 (c) -1/2(d) 1/2(a) 1:4 (b) 2:3 (c) 1:2 2. The value of [P] is (where [.] donotes the greatest integer (d) 2:1 5. The sum of the AM and GM of two positive numbers is function) equal to the difference between the numbers. The (a) -2 (b) -1 numbers are in the ratio (c) 2 (d) 1 (a) 1:3(b) 1:6 3. The value of [2P - Q] is (where [.] denotes the greatest (c) 9:1 (d) 1:126. The ratio of the AM, GM and HM of the roots of the given integer function) quadratic equation is (a) 2 (b) 3 (a) 1:2:3 (c) 5 (d) 6 (b) 1:1:2 (c) 2:2:3 (d) 1:1:1

PASSAGE 3

If a sequence or series is not a direct form of an AP, GP, etc. Then its *n*th term can not be determined. In such cases, we use the following steps to find the *n*th term (T_n) of the given sequence.

Step -I : Find the differences between the successive terms of the given sequence. If these differences are in AP, then take $T_n = an^2 + bn + c$, where a, b, c are constants.

Step-II : If the successive differences finding in step I are in GP with common ratio r, then take

 $T_n = a + bn + cr^{n-1}$, where a, b, c are constants.

Step -III : If the second successive differences (Differences of the differences) in step I are in AP, then take

 $T_n = an^3 + bn^2 + cn + d$, where a, b, c, d are constants.

Step-IV : If the second successive differences (Differences of the differences) in step I are in GP, then take

 $T_n = an^2 + bn + c + dr^{n-1}$, where a, b, c, d are constants.

Now let sequences :

A: 1, 6, 18, 40, 75, 126,

B : 1, 1, 6, 26, 91, 291,

C : ln 2 ln 4, ln 32, ln 1024,

On the basis of above information, answer the following questions :

1. Second successive differences of the sequences A and B are :

(a) Both AP (b) Both GP

- (c) AP and GP respectively (d) GP and AP respectively
- 2. If the *n*th term (T_n) of the sequence A is $an^3 + bn^2 + cn + d$, then 6a + 2b - d is
 - (a) ln 2 (b) 2 (c) ln 8 (d) 4
- 3. The format of *n*th term (T_n) of the sequence C is

(a)
$$an^2 + bn + c$$

(b) $an^3 + bn^2 + cn + d$
(c) $an + b + cr^{n-1}$
(d) $an^2 + bn + c + dr^{n-1}$

- 4. The correct statement for sequence B is
 - (a) second successive differences makes AP with common difference 3

- (b) second successive differences makes AP with common differences ln 4
- (c) second successive differences makes a GP with common ratio 3
- (d) second successive differences makes a GP with common ratio 4
- 5. The correct statement for sequence C is
 - (a) First successive differences form an AP with common difference ln 4
 - (b) First successive differences form a GP with common ratio 4
 - (c) Second successive differences form an AP with common difference ln 2
 - (d) Second successive differences form a GP with common ratio 2

A) 1

PASSAGE 4

The sum of the squares of three distinct real numbers which are in strictly increasing GP is S^2 . If their sum is αS .

On the basis of above information, answer the following questions :

1.	α^2 lies in Constant	8.0.7	(a) 0	jande n. S.	(b) 1	$e_{j,\mathbf{k}} \in \mathcal{M}_{j} \cap \mathcal{M}_{j}$	
	(a) $\left(\frac{1}{3}, 1\right)$ (b) (1, 2)	4.	(c) 2 If $S = 10\sqrt{3}$, the	n the greate	(d) 3 est value of t	he middle term is	
	(c) $\left(\frac{1}{3},3\right)$ (d) $\left(\frac{1}{3},1\right) \cup (1,3)$ (c)		(a) 5		(b) 5√3 (d) 10√3	and the	
2.	If $\alpha^2 = 2$, then the value of $[r]$ is (where [.] denotes the greatest integer function and r is common ratio of GP)	5.	(c) 10 If we drop the and take $r^2 = 1$,	condition th	at the GP is	strictly increasing io of GP) then the	
	(a) 0 (b) 1 (c) 2 (d) 3 (c) 2^{2} (c)		value of α is (a) 0	150°7×	(b) ± 1		
3.	(c) 2 If $r = 2$, then the value of (α^2) is (where (.) denotes the least integer function and r is common ratio of GP)		(c) ±2		(d) ±√3		

PASSAGE 5

We are giving the concept of arithmetic mean of mth power. Let a, b > 0 and $a \neq b$ and let m be a real number. Then

$$\frac{a^m+b^m}{2} > \left(\frac{a+b}{2}\right)^m, \text{ if } m \in \mathbb{R} \sim [0,1]$$

However if $m \in (0, 1)$, then $\frac{a^m + b^m}{2} < \left(\frac{a+b}{2}\right)^m$

L MARK & CRIMINAL PLAN

Obviously if $m \in \{0, 1\}$, then $\frac{a^m + b^m}{2} = \left(\frac{a+b}{2}\right)^m$

On the basis of above information, answer the following questions :

- 1. If a, b be positive and a + b = 1 ($a \neq b$) and if $A = \sqrt[3]{a} + \sqrt[3]{b}$ then the correct statement is
 - (a) $A > 2^{2/3}$ (b) $A = \frac{2^{2/3}}{3}$ (c) $A < 2^{2/3}$ (d) $A = 2^{2/3}$
- 2. If x, y be positive real numbers such that $x^2 + y^2 = 8$, then the maximum value of x + y is
 - (a) 2 (b) 4 (c) 6 (d) 8
- 3. If a, b, c are positive real numbers but not all equal such that a + b + c = 1, then best option of values $\frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} + \frac{a^2 + b^2}{a + b}$ lie between
- (a) $\left(\frac{3}{2}, \infty\right)$ (b) $(1, \infty)$ (c) $(0, \infty)$ (d) none of these 4. If a and b are positive $(a \neq b)$ and a + b = 1 and if $A = \left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2$, then the correct statement is (a) A > 8 (b) A < 8(c) $A > \frac{25}{2}$ (d) $A < \frac{25}{2}$ 5. If a, b, c be positive and in Harmonic progression and if

2. A Rest li

 $\lambda = \frac{a^n + c^n}{b^n}, \forall n \notin (0, 1), \text{ then the correct statement is}$ (a) $\lambda < 2$ (b) $\lambda > 2$ (c) $\lambda = 2$ (d) none of these

PASSAGE 6

We are giving the concept of arithmetic mean of m th power. Let $a_1, a_2, a_3, \ldots, a_n$ be n positive real numbers (not all equal) and let m be real number.

Then
$$\frac{a_1^m + a_2^m + a_3^m + \ldots + a_n^m}{n} > \left(\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}\right)^m$$
; if $m \in \mathbb{R} \sim [0,1]$
However if $m \in (0,1)$, then $\frac{a_1^m + a_2^m + a_3^m + \ldots + a_n^m}{n} < \left(\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}\right)^m$
Obviously if $m \in \{0,1\}$, then $\frac{a_1^m + a_2^m + a_3^m + \ldots + a_n^m}{n} = \left(\frac{a_1 + a_2 + a_3 + \ldots + a_n}{n}\right)^m$

On the basis of above information, answer the following questions :

- If sum of the mth powers of first n odd numbers is λ, ∀m>1 then

 (a) λ < n^m
 (b) λ > n^m
 - (c) $\lambda < n^{m+1}$ (d) $\lambda > n^{m+1}$
- 2. If a, b, c be positive real numbers, then the possible best option of values
 - $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$ lie between

(a)
$$(1, \infty)$$
(b) $(0, \infty)$ (c) $\left[\frac{3}{2}, \infty\right]$ (d) $[2, \infty)$

3. If x > 0, y > 0, z > 0 and x + y + z = 1, then the minimum value of $\frac{x}{2-x} + \frac{y}{2-y} + \frac{z}{2-z}$ is (a) $\frac{9}{5}$ (b) $\frac{8}{5}$ (c) $\frac{3}{5}$ (d) $\frac{2}{5}$

- **4.** If $a_1, a_2, a_3, ..., a_n$ are all positive such that $a_1^2 + a_2^2 + a_3^2 + ... + a_n^2 = A$ and if greatest and least values of $(a_1 + a_2 + a_3 + ... + a_n)^2$ are G and L respectively, then (a) G - L = 2A(b) G - L = n A(c) G - L = (n-1)A(d) G - L = (n - 2) A
- 5. If a, b, c, d be positive and not all equal to one another such that a + b + c + d = 4 / 3, then the minimum value of

$$\sqrt{\left(\frac{1}{b+c+d}\right)} + \sqrt{\left(\frac{1}{c+d+a}\right)}$$
$$+ \sqrt{\left(\frac{1}{d+a+b}\right)} + \sqrt{\left(\frac{1}{a+b+c}\right)}$$
is
(a) 2 (b) 4
(c) 6 (d) 8

5

5xy

5xy

5xy

(b)

(d) <u>a</u>

2

PASSAGE 7

If
$$a_1 > 0$$
, $i = 1, 2, 3, ..., n and $m_1, m_2, m_3, ..., m_n$ be positive rational numbers, then

$$\left(\frac{m_1a_1 + m_2a_2 + ... + m_na_n}{m_1 + m_2 + ... + m_n}\right) \ge (a_1^{m_1} a_2^{m_2} ... a_n^{m_n})^{1/(m_1 + m_2 + ... + m_n)}$$

$$\ge \frac{(m_1 + m_2 + ... + m_n)}{a_1 + a_2 + ... + m_n}$$
is called weighted mean theorem

$$\frac{m_1}{a_1} + \frac{m_2}{a_2} + ... + \frac{m_n}{a_n}$$
where $A^* = \frac{m_1a_1 + m_2a_2 + ... + m_na_n}{m_1 + m_2 + ... + m_n}$

$$= \text{Weighted arithmetic mean}$$
 $G^* = (a_1^m a_n^{m_2} ... a_m^m)^{1/(m_1 + m_2 + ... + m_n)}$

$$= \text{Weighted geometric mean}$$
and $H^* = \frac{m_1 + m_2 + ... + m_n}{a_1} = \text{Weighted harmonic mean}$
 $\frac{m_1}{a_1} + \frac{m_2}{a_2} ... \frac{m^n}{a_n}$
i.e., $A^* \ge G^* \ge H^*$
Now, let $a + b + c = 5(a, b, c > 0)$ and $x^2y^3 = 6(x > 0, y > 0)$
On the basis of above information, answer the following questions :
1. The greatest value of ab^3c is
(a) 3
(b) 9
(c) 27
(d) 81
2. Which statement is correct
(a) $\frac{1}{5} \ge \frac{1}{\frac{1}{a + \frac{5}{b} + \frac{1}{c}}$
(b) $\frac{1}{25} \ge \frac{1}{\frac{1}{a + \frac{5}{b} + \frac{1}{c}}$
(c) $\frac{2x + 3y}{5} \ge (6)^{1/5} \ge \frac{5xy}{3x + 4y}$
(c) $\frac{1}{5} \ge \frac{1}{\frac{1}{a + \frac{5}{b} + \frac{1}{c}}$
(d) $\frac{1}{25} \ge \frac{1}{\frac{1}{a + \frac{5}{b} + \frac{1}{c}}$
(d) $\frac{2x + 3y}{5} \ge (6)^{1/5} \ge \frac{5xy}{3x + 4y}$
(e) $\frac{1}{5} \ge \frac{1}{\frac{1}{a + \frac{5}{b} + \frac{1}{c}}$
(f) $\frac{2x + 3y}{5} \ge (6)^{1/5} \ge \frac{5xy}{3x + 4y}$
(g) $\frac{1}{5} \ge \frac{1}{\frac{1}{a + \frac{5}{b} + \frac{1}{c}}$
(h) $\frac{2x + 3y}{5} \ge (6)^{1/5} \ge \frac{5xy}{2x + 3y}$
3. The least value of $3x + 4y$ is
(a) 5
(b) 7
(c) 10
(c) $\frac{d_d2d_3}{\sqrt[3]{3}}$
(c) $\frac{d_1}{\sqrt[3]{3}}$
(c) 10
(c) $\frac{d_d2d_3}{\sqrt[3]{3}}$
(c) 10
(c) $\frac{d_d2d_3}{\sqrt[3]{3}}$
(c) $\frac{d_1}{\sqrt[3]{3}}$
(c) 10
(c) $\frac{d_d2d_3}{\sqrt[3]{3}}$
(d) $\frac{d_1}{\sqrt[3]{3}}$
(d) $\frac{d_2}{\sqrt[3]{3}}$
(e) 10
(f) 10
($

PAGE#11

= 1 is

 d_3^2

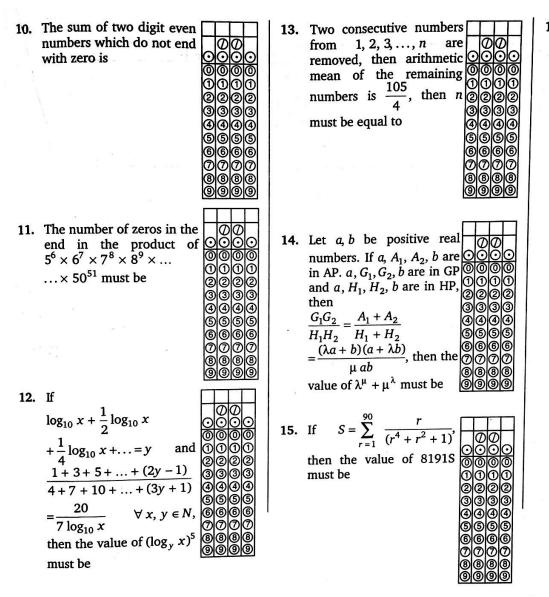
Numerical Grid-Based Problems

Solve the following problems and mark your response against their respective grids. Write your answer in the top row of the grid and darken the concerned numbers in the respective columns.

For example. If answer of a question is 0247, then

1.	If $x_1, x_2, x_3,, x_{2008}$ are in HP and $\sum_{i=1}^{2007} x_i x_{i+1} = \lambda x_1 x_{2008}$, then λ must be equal to :		A three digit number whose consecutive digits form a GP. If we subtract 792 from this number, we get a number consisting of the same digits written in the reverse order. Now, if we increase the second digit of the required digits will form an AP. The (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	7. If a_n denotes the coefficient of x^n in $P(x) = (1 + x)$ $+ 2x^2 + 3x^3 + + n x^n)^2$, then the value of a_{24} must be (3) (3) $(3)(4)$ $(4)(3)$ $(5)(6)$ $(6)(6$
	If $S_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^{n-1}}$ and $2 - S_n$ (1) $< \frac{1}{100}$, then the least (2) value of <i>n</i> must be : (5) (6) (6) (6)	000	be If $\sum_{r=1}^{n} T_r$ $= \frac{n(n+1)(n+2)(n+3)}{8}$, $\bigcirc \bigcirc \bigcirc$	 8. The sum of the products taken two at a time of the numbers 1, 2, 3, 4,, 10 is 00000 01010 2222 3333 3444 555 666 7707 8866 999
3.	If (1) (2010) + (2) (2009) + (3) (2008) + + (2010) (1) = (335) (2011) (λ), then the value of λ must be (3) (6) (7) (8) (9)		If $S_n = 1^2 + 2 \cdot 2^2$ + $3^2 + 2 \cdot 4^2 + \dots$ $\dots = \frac{n(n+1)^2}{2}$, where <i>n</i> is even, then the value of S_{21} must be 0 0 0 0 0 0 0 0 0 0	9. If a, b, c are in HP and if $ \begin{pmatrix} a+b\\ 2a-b \end{pmatrix} + \begin{pmatrix} c+b\\ 2c-b \end{pmatrix} > \\ \sqrt{\lambda\sqrt{\lambda\sqrt{\lambda\dots\infty}}}, \text{ then the} \\ value of \lambda must be \end{cases} $

11



16. Balls are arranged in rows to form an equilateral triangle. The first row consist of one ball, the second row of two balls, the third row of three balls and so on. If 669 more balls are added then all the balls can be arranged in the shape of a square and each of the O sides, then contains 8 balls less than each side of the triangle, then the initial no. of balls must be

• Matrix-Match Type

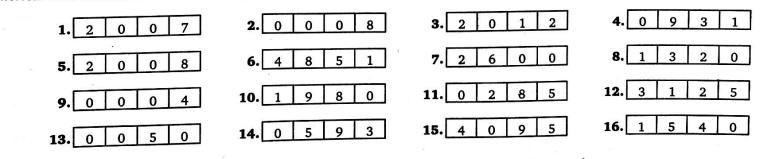
Given below are Matching Type Questions, with two columns (each having some items) each. Each item of Column I has to be matched with the items of Column II, by encircling the correct match(es).

NOTE An item of Column I can be matched with more than one items of Column II. All the items of Column II have to be matched.

1. Observe the following columns :

	Ender States of States	Column I			Column II
(A)		al numbers such that 3 (a^2 - ca), then a , b , c are in		(P)	АР
(B)	If the square of difference differences are in	es of three numbers be in A	P, then their	(Q)	GP
(C)	If $a - b$, $ax - by$, $ax^2 - by^2$	$a, b \neq 0$) are in GP, then $x, y, -$	$\frac{x-by}{a-b}$ are in	(R)	HP
17-12-12	4	5. 		(S)	Equal
(A) (P @ B S T	(B) P Q B S T	(C) ®	0(BSD

nec	tive Que	stion	c Type	I Conh	000 00	weat	-	-1											
.,	are fac		a iype	i [Oilij	one co	mect	answe	r]										. 4	4
1.		2.	(b)	3.	(b)	4.	(c)	5.	(d)	6.	(c)	7.	(b)	8.	(b)	9.	(b)	10.	(d)
11.	-	12.	(c)	13.	(b)	14.	(a)	15.	(d)	16.	(a)	17.	(c)	18.	(c)	19.	(b)	20.	(c)
21.		22.	(a)	23.	(d)	24.	(b)	25.	(c)	26.	(c)	27.	(c)	28.	(a)	29.	(c)	30.	(d)
31.		32.	(a)	33.	(b)	34.	(b)	35.	(c)	36.	(c)	37.	(d)	38.	(c)	39.	(d)	40.	(a)
41.		42.	(c)	43.	(a)	44.	(a)	45.	(b)	46.	(d)	47.	(a)		(c)	49.	(a)	50.	(c)
51.		52.	(c)	53.	(d)	54.	(c)	55.	(a)	56.	(d)	57.	(a)		(a)	59.	(b)	60.	(a)
61.		62.	(a)	63.	(b)	64.	(a)	65.	(c)	66.	(a)	67.	(c)		(Ъ)	69.	(c)'	70.	(c)
71.		72.	(a)	73.	(a)	74.	(a)	75.	(c)	76.	(d)	77.	(d)		(d)	79.	(d)	80.	(b)
81.		82.	(d)	83.	(b)	84.	(b)	85.	(b)	86.	(c)	87.	(c)	88.	(c)	89.	(Ь)	90.	(c)
91.	(a)	92.	(a)	93.	(a)	94.	(b)	95.	(a)								-		
bjec	tive Que	estion	is Type	II [On	e or mo	re tha	n one o	correct a	answer(s)]									
	(a, b, c,	d)		2	a, c)			2	(a, d)			A (a, d)			5 (a, b, c		5 N
1		u)		4. (1							a, u) c, d)			10. (
		100		7 (ahc	a 1		X											
6.	(c, d)				a, b, c, a b c			8. 13.	-	ፈን			and the second						1022
6. 11.	(c, d) (a, d)			12. (a, b, c,			13.	(a, b, c	d)		14. (a, b)			15. (a, b, c	, d)	10.82
6. 11. 16.	(c, d) (a, d) (a, b, c,			12. (17. (a, b, c, c, d)			13. 18.	(a, b, c, (a,c)			14. (19. (a, b) a, b)	a. 13		15. (20. (a, b, c a, b, c	, d)	1088 1
6. 11. 16. 21.	(c, d) (a, d)	d)		12. (a, b, c, c, d) a,c)			13. 18. 23.	(a, b, c)		14. (19. (a, b) a, b) a, c, d)		í.	15. (a, b, c a, b, c	, d)	1080 1 1 L
6. 11. 16. 21. 26.	(c, d) (a, d) (a, b, c, (a, b)	d))	ision T	12. (17. (22. (27. (a, b, c, c, d) a,c)			13. 18. 23.	(a, b, c, (a,c) (a, b, c))		14. (19. (24. (a, b) a, b) a, c, d)	ь. , , , , , , , , , , , , , , , , , , ,		15. (20. (a, b, c a, b, c	, d)	1088 1 1 1
6. 11. 16. 21. 26. nke	(c, d) (a, d) (a, b, c, (a, b) (a, c, d) d-Comp	d)) rehe r	1.001 - 6045 - 8448	12. (17. (22. (27. (ype	a, b, c c, d) a,c) b, c)	, d)	-, (c)	13. 18. 23. 28.	(a, b, c (a,c) (a, b, c) (a, b, c))	Pass	14. (19. (24. (a, b) a, b) a, c, d)	2. (c)	3.	15. (; 20. (; 25. (;	a, b, c a, b, c	, d))	inez I I I
6. 11. 16. 21. 26. nke	(c, d) (a, d) (a, b, c, (a, b) (a, c, d) d-Compt	d)) reher e 1	1. (a)	12. (17. (22. (27. (ype 2. (b	a, b, c, c, d) a,c) b, c)) 3. ((c) 4	• (c)	13. 18. 23. 28. 5. (d)	(a, b, c (a,c) (a, b, c) (a, b, c))		14. (19. (24. (29. (age 4	a, b) a, b) a, c, d) b, d) 1. (d)			15. (1 20. (1 25. (1 (d) 4	a, b, c a, b, c a, b) 4. (c)	, d)) 5. (d)	
6. 11. 16. 21. 26. nke	(c, d) (a, d) (a, b, c, (a, b) (a, c, d) d-Comp	d) rehen e 1 e 2	1. (a) 1. (c)	12. (17. (22. (27. (ype	a, b, c, c, d) a,c) b, c)) 3. ((c) 4	•. (c) • (a)	13. 18. 23. 28.	(a, b, c (a,c) (a, b, c) (a, b, c))	Pass	14. (19. (24. (29. (age 4 age 5	a, b) a, b) a, c, d) b, d) 1. (d) 1. (c)	2. (b)	3.	15. ((20. (a 25. (a (d) 4 (b) 4	a, b, c a, b, c a, b) 4. (c) 4. (c)	, d)) 5. (d) 5. (b)	
6. 11. 16. 21. 26. nke	(c, d) (a, d) (a, b, c, (a, b) (a, c, d) d-Compt	d) rehen e 1 e 2	1. (a)	12. (17. (22. (27. (ype 2. (b	a, b, c, c, d) a,c) b, c)) 3. ((c) 4		13. 18. 23. 28. 5. (d)	(a, b, c (a,c) (a, b, c) (a, b, c))	Pass Pass	14. (19. (24. (29. (age 4 age 5 age 6	a, b) a, b) a, c, d) b, d) 1. (d)		3. 3.	15. (4 20. (4 25. (4 (d) 4 (b) 4 (c) 4	a, b, c a, b, c a, b) 4. (c) 4. (c) 4. (c)	, d)) 5. (d)	



Matrix-Match Type

1. $A \rightarrow (P, Q, S); B \rightarrow (R); C \rightarrow (P, Q, S)$